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Abstract. Used as a tool for large scale global optimisation, simulated annealing incurs 
heavy computational costs. Therefore, choosing an optimal cooling schedule is of great 
scientific and economic importance. For the first time an analytic as well as a numeric 
solution to this problem is presented, albeit only for a small example system. The example 
shows the role of optimal control theory for this problem. 

1. Introduction 

Simulated annealing is a technique [ 1,2] for finding optimal and near-optimal solutions 
to difficult optimisation problems. It has been especially useful in the context of 
NP-complete combinatorial optimisation problems [3] and it exploits an analogy 
between these problems and physical systems. Careful annealing of a real physical 
system should bring it into its state of equilibrium with the ambient temperature T 
and thus for T+O the system moves into its ground state(s). Similarly, the proper 
simulation of this procedure treating an optimisation problem as a physical system 
should result in the simulation finding the optimal solution. 

Simulated annealing has been applied to a wide range of problems characterised 
by having a complex state space structure often due to various constraints. The 
complexity of the structure is due to numerous local minima whose numbers are often 
exponential in the number of degrees of freedom. The problem of finding the ground 
state of a spin glass is a problem of this kind from condensed matter physics [4]. 
Simulated annealing has also proved a useful tool in the design of integrated circuits 
[l, 5,6], for partitioning, routing, and placement [7]. It has been applied to many 
other problems including the travelling salesman [8,9], graph partitioning [lo], restor- 
ation of images [ l l ] ,  and parameter estimations [12]. While this list is far from 
exhaustive, it shows that the problems attacked by simulated annealing are of great 
scientific and industrial importance. 

Simulated annealing requires large amounts of computer time. Lowering the compu- 
tational costs is a natural way to improve the algorithm [6, 11, 13-16]. Apart from 
changing the algorithm [ 171 or choosing special move classes [ 181, the central question 
is: what is the optimal annealing schedule? 

Attempted answers introduce some additional assumptions [ 10,191 or proceed in 
a purely heuristic way [ 161. While suggested schedules can be very valuable, we would 
like to consider the problem of finding the optimal annealing schedule without addi- 
tional assumptions. We succeed in finding the optimal schedule, albeit only for a very 
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simple example. The example system consists of only three states and shows how the 
crossing of a single barrier is optimised. As the state space of the problems optimised 
by simulated annealing have many barriers, this paper thus provides only a first step 
towards the general case. The aim of our analysis is to obtain insight into the mechanisms 
governing the optimal schedule and to determine its connection to system parameters. 
Should such efforts succeed, methods exist [20] for determining the values of the 
system parameters using data gathered during an annealing run for actual optimisation 
problems. 

2. Simulated annealing-a Markov process 

Simulated annealing is based on the Monte Carlo simulation of physical systems. As 
such it uses the Metropolis algorithm [21] which involves a biased random walk through 
the state space of the system. Let R = { w }  represent this finite state space, let E : R + R 
be the cost function (energy) defined on this state space, and let T be the adjustable 
parameter in the algorithm representing the temperature of the heat bath in which the 
corresponding physical system is immersed. At each step of the algorithm, a neighbour 
w ’  of the current state wk is selected at random to be a candidate for becoming the 
next state. It actually becomes the next state only with probability 

where PE = E(@’) - E ( w k ) .  If this candidate is accepted, then w k + l =  w ’ ,  or else the 
next state is the same as the old state, wk+l = wk.  Thus to complete the definition of 
the dynamics for the algorithm, we must specify (i)  the schedule of temperatures T, 
as a function of time (i.e. the number of Metropolis steps performed), and (ii) a 
definition of which states are to be considered neighbours. 

The latter is known as the move class and defines an undirected graph structure 
on the state space. We will denote by N ( w )  the set of neighbours of a state w in this 
graph. As an example we mention the case of an Ising spin glass, where two states 
(i.e. spin configurations) are defined to be neighbours if they differ by one spin flip. 

The matrix I’I = (llpe) of infinite-temperature transition probabilities from state a 
to p is defined by 

where IN(a)I is the number of neighbours of a. These are the transition probabilities 
if the algorithm automatically accepts each attempted move, i.e. if T - a .  At finite 
temperature the acceptance decision is superimposed on ll in (2.2) to give r( T) defined 
by 

npe exp(-AEl T )  if P E  > O ,  a # p  

rpn = np-. if AE S O ,  a # p (2.3) 
1- c re. i f a = p  1 5+ 

where now A E = E ( p ) - E ( a ) .  
From a given move class { N ( w ) }  the stationary distribution of Il = r(co) can be 

determined. Typically, one would like to choose a move class such that the stationary 
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distribution at infinite temperature is uniform [22]. An easy way to achieve this is to 
make IN(o)l constant over o, i.e. to make each vertex have the same number of 
neighbours. This property is expressed in the language of graph theory [,23] by saying 
that the graph is regular. Assuming the graph to be connected, it is a regular and 
undirected graph if and only if rI is symmetric. 

In the discussion below, we will find it convenient to lump [20] states together 
which are energetically as well as dynamically equivalent. The new states will have a 
higher degeneracy and this will be represented in the stationary distribution of the 
lumped ll matrix. 

From a technical point of view, the simulated annealing procedure introduced 
above is thus a discrete time Markov process with time-dependent transition prob- 
abilities. After specifying an annealing schedule T,, k = 1, . . . , the dynamics is given by 

which describes the time evolution of the probability distribution p (  k) of a random 
walker in the state space of the system. Note that in the most general case treated here 
the temperature Tk can be reset after each Metropolis step. 

In  this picture the idea behind simulated annealing becomes clear: by construction, 
p (  k)  will tend to a Boltzmann distribution at the temperature Tk if the temperature is 
kept fixed. The probability of being in low energy states is increased for successively 
lower temperatures and long enough cooling times. The ultimate hope then is to have 
all the weight of the probability distribution in the ground state(s) for an appropriate 
cooling schedule in which T goes to zero. 

3. Optimisation criteria 

Before an optimal annealing schedule can be determined, we must choose an optimality 
criterion. Indeed several criteria are possible: 

( a )  the probability to be in the ground state; 
( b )  the final energy; 
(c) the best so far (BSF) energy. 
The probability to be in the ground state has mainly been investigated in the context 

of infinite time schedules [24,25]. One should note, however, that as an optimising 
goal for finding near optimal solutions within a limited time it is only useful if it also 
increases the probability to be in other low lying states. 

While the probability to be in the ground state is a number, the final and the BSF 

energy [ 12,261 are stochastic quantities. Consider an actual simulation of the annealing. 
Starting from a random initial state coo, the stochastic sequence wk is chosen according 
to the Metropolis algorithm. The BSF energy of a given path up to step N is given as 

and describes the lowest energy found on that path. The final energy is the energy of 
the last state w N .  The probability distributions of the final energy and of the BSF energy 
change with time; their evolution is induced by the underlying random walk in the 
state space. 
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From the viewpoint of the analogy with statistical mechanics, the mean of the final 
energy is the most natural criterion of merit. It is computationally simple as it depends 
only on the distribution of the system at a single time. 

The BSF energy is more complicated as it depends on the whole path of a random 
walker. On the other hand it is a more natural choice for simulated annealing, where 
one is seeking the lowest energy state. 

Which objective to optimise is a subjective decision. The criterion of merit for 
commercial applications should go beyond the above criteria and should use an 
objective which includes the price of computer time and the financial gain per unit 
improvement in the value of the minimal energy found by the simulated annealing 
procedure. 

Due to its greater simplicity we have in this paper chosen the mean final energy 
as a criterion for the optimal schedule problem. 

4. The optimal annealing schedule-an optimisation problem 

Using the energy vector E = ( . . . , E, ,  . . . ), with E, being the energy of state a, the 
formal problem of finding an optimal schedule to minimise the mean final energy in 
a finite number of Metropolis steps N can be written as 

N 
Mini?= Min E n I'(T,)p(O) 

{TAIA=I, . Y  k = ]  

with p ( 0 )  being the initial distribution. 
For known energy function and move class the solution of this optimisation problem 

can be addressed. However the transition probability matrices for real problems are 
far too large for explicit calculation and moreover only little is known about the 
systems. Nonetheless we investigate the optimal annealing schedule for a completely 
known system. The immediate goal is to establish optimal schedules for the example 
system for different input parameters. Those schedules can be compared with other 
frequently used schedules like the linear and the exponential schedule thus giving 
indications of the possible gains. Moreover it allows us to decide whether the constant 
thermodynamic speed schedule [lo, 191 discussed in more detail in section 8 is always 
optimal. But apart from this short term goal there is also a long term goal connected 
with our approach. 

By calculating the optimal annealing schedule explicitly for a number of systems 
we hope to get some insight into which features of the system are relevant for the 
optimal schedule. As pointed out above, many of the already used schedules do depend 
on certain system parameters-our approach should shed some light on whether these 
are the correct ones. Once the relevant quantities are known, the question of how they 
can be determined for an actual system under consideration has to be attacked. The 
lumping procedure described in [20] is an example of such an effort, 

5. The example system 

Our example is a special four-state system which can be reduced by lumping to a 
three-state system. It is the simplest system with a move class represented by a regular 
graph which possesses one local and one global minimum. Figure 1 shows the four-state 
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Figure 1. The four-state system shown on the right is the simplest system with a move class 
represented by a regular graph and with one local and one global minimum. As the energies 
of states 3 and 3’ are chosen to be equal, one can lump the system to the three-state system 
shown on the left. 

system and its lumped three-state version. The state space consists of the states 1, 2 ,  
3 and 3’ with energies: 

E ( 1 ) = 0  

E ( 2 )  = 1 (5.1) 
E ( 3 ) = E ( 3 ’ ) = D 2 1  

As states 3 and 3’ are energetically equivalent and as they are connected to the same 
other states with the same transition probabilities, they can be combined to one new 
state with degeneracy 2 .  Using the abbreviation x = e-’’r the transition probability 
matrix r implementing the Metropolis algorithm is given by 

(5 .2)  

The dynamics of the probability distribution p in the state space is then described by 

P ( k )  = r ( x k ) P ( k  - 1) .  (5 .3)  

Using the energy vector E = (0, 1 ,  D )  we have to determine 
N 

As initial distribution p ( 0 )  we used Boltzmann distributions at different initial tem- 
peratures. We investigated this problem first numerically and then analytically, using 
two different approaches. 

6. Results 

Optimal schedules were determined numerically for a varying number of steps N, for 
different activation energies 0, and for different initial distributions. 

Figure 2 shows the optimal annealing schedules for different initial distributions. 
As the probability distribution for the three-state system is normalised, every distribu- 
tion corresponds to one point in the p ,  , p 2  plane. The bold curve in figure 2 corresponds 
to the family of Boltzmann equilibrium distributions at different temperatures T.  For 
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Figure 2. For the three-state system of figure 1, the paths created by the optimal cooling 
schedules for different initial temperatures (e-’’T = 0.1, 0.2 and 0.4) are shown. The bold 
curve marks the equilibrium states. Note the turnpike behaviour of the optimal paths. After 
the first few steps the optimal schedules lead the system always along the same curve. 

a given initial distribution the optimal annealing schedule determines a sequence of 
probability distributions as a function of the step number. In figure 2 we have plotted 
three of these sequences for different initial distributions (e-”T = 0.1, 0.2 and 0.4). For 
each of these sequences, successive points have been connected by straight lines. 

The most remarkable and unexpected feature is the ‘turnpike’ behaviour seen in 
the figure. By ‘turnpike’ we mean that the optimal path-after a short transition period 
lasting only a few steps-is independent of the initial distribution. Moreover it turns 
out that it is independent of the duration N of the annealing schedule. This means 
that the optimal schedule drives the system in a few steps onto the turnpike. Thereafter 
any additional time (number of steps) is used to proceed further along the turnpike 
towards that probability distribution which has all its weight in state 1. Only at the 
very end of an annealing schedule does the system leave the turnpike again. 

We now discuss the optimal path and how it can be characterised in more detail. 
The numerical results show that the optimisation policy for the last step should be 
x = 0, i.e. zero temperature. This can easily be understood: while all of the probability 
in state 3 is transported to states 1 and 2 independent of the temperature, any finite 
temperature will shift some probability from states 1 and 2 to state 3. This increases 
the final energy as can analytically be seen from 

E = Erp(o). (6.1) 

Also the policy for the next to the last step can be analytically determined: 

Minx = Minx EI’ (O)r (x )p (O) .  (6.2) 

This results in the following optimal x 

Note that x depends only on the ratio p 2 / p , .  

tions for the remaining schedule. 
A careful inspection of the numerical results led us to make the following assump- 
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(i) At any given point along the optimal path, the optimal policy for the next step 

(ii) The probabilities enter the optimal policy only as the ratio p 2 / p , ,  
Thus we make the ansatz 

is only a function of the current state. 

(6.4) 

In addition we assume that the initial distribution has most of its weight in the low 
energy state 

with y<< 1 and y 3  of order one. The unknown constants b, and b2 were determined 
by minimising the average final energy I? analytically for different number of steps N. 
Expanding E in powers of y and taking only terms up to order M gave the results 
displayed in table 1 for the various activation energies. Note that b does not depend 
on N. As these calculations become quite lengthy for a larger number of steps, the 
results have been obtained by using the analytic calculation package REDUCE. 

The examples in the table show that 

D - 1  
b, =- 

D (6.7) 

which matches the coefficient of p 2 / p l  in the policy for the last step. For higher orders 
in y, b depends on the initial distribution. 

Table 1. The coefficients b,  and b, of the optimal policy for the annealing of the example 
system in figure 1 are shown for various activation energies D. Note that b, equals ( D  - l)/D. 

I I 

2 

3 

4 

2 I 4 3 
3 3 0 4 
4 ;i 0 5 

_ -  

5 5 0 6 

We determined the thermodynamic speeds for the various optimal schedules. We 
found that the thermodynamic speed was not constant along the schedules. Up to now 
we have not been able to detect any systematic relation between the thermodynamic 
speed and other properties of the optimised schedules. So far we can draw only one 
conclusion: constant thermodynamic speed schedules cannot always represent the 
optimal schedules as we have found explicit counterexamples. 

7. The optimal annealing schedule as an optimal control problem 

In this section we show how optimal control theory [27-301 can be employed to 
determine the optimal annealing schedule for this example system. A short review of 
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the technique is given in the appendix. First we change the discrete time description 
of the dynamics equation (5 .3)  into a continuous one [24]: 

p = A p  (7.1) 

with 

We note that apart from the stationary mode A has a slow mode describing the flow 
of probability over the barrier and a fast mode which brings p 3  into equilibrium with 
given p ,  and p 2 .  To simplify the control problem further we eliminate p 3  adiabatically. 
Taking into account the normalisation of p we find for p2 

) + I D  1 
p, = -p2x”-( 1 - 2x (1-p2)--- 2(1+xD) l + x D ’  (7.3) 

For small temperatures x<< 1 and with a rescaling of time by a factor 2 ,  this can be 
simplified to 

p 2  = -p*xD-’ + x”( 1 - p * ) .  (7.4) 

This is the usual dynamics for a two-level system with Arrhenius factors for jumping 
over the separating barrier of height D [31]. 

In this model minimising the mean energy is equivalent to minimising the final p 2 .  
This can be written as 

MinJ  d tp2  
0 

(7.5) 

where T is now the total time ( =total number of steps) for the process. The dynamics 
is given by (7.4). Applying optimal control theory we find the Hamiltonian: 

H ~ $ 2  + AIj2 = ( 1  + A ) @ ,  . (7.6) 

The optimal policy is obtained by extremising H 

JH apz - -0. 
ax ax (7.7) 

For any dynamics p,, the optimal x can only depend on p 2  and not on A. For our p2, 
we find 

which is the policy from our other analytical and numerical results. 
Note how quickly the optimal feedback control was obtained by using optimal 

control theory. This solution of the optimal annealing schedule for the two-level model 
might be also of interest as a building block for the optimal schedule of much larger 
systems. Huse and Fischer [31] for instance used a number of independent two-level 
systems to describe the relaxation in disordered Ising systems. However, it is an open 
question whether such an approximation is useful for a global path optimisation. 
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We now explore the asymptotic form of our optimal 
in (7.8) into (7.4) and integrating p 2  for pz<< 1 we obtain 
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schedule. On substituting x 

which for long times 

t > > p 2 ( 0 ) - ‘ D - ”  . - 

reduces to 

(7.10) 

Within the approximations made above we find for the optimal schedule 

and thus for long times 

D - 1  
T(t)--. 

In t 

(7.11) 

(7.12) 

As has been previously shown [l l ,  241, this schedule guarantees convergence to 
the ground state with probability 1. Note that minimising the mean final energy is 
equivalent to maximising the likelihood p1(7) of occupying the ground state at the 
final time and thus the optimal schedules for these two objectives are identical. 

8. Comparison with other annealing schedules 

In this section we compare the average final energy of a two-level system obtained by 
the optimal schedule with those obtained by other frequently used schedules. These 
are the linear schedule 

T ( t ) =  To-Et (8.1) 

and the exponential schedule 

T (  t )  = Toa‘. (8.2) 

We determined the mean final energy by integrating (7.4) numerically for different 
values of the total available annealing time T ( = number of available Metropolis steps) 
and for different values of E and a. In all cases the initial distribution was an equilibrium 
distribution at T = a, i.e. p 2 ( 0 )  = 0.5, and D = 1.2. The initial temperature To was 
always taken to equal the initial temperature of the optimal schedule. 

Figure 3 shows the mean final energy as a function of E for the linear schedule. 
The available annealing time T = 1000. The distinct minimum corresponds to E = T0/7. 
Thus here the temperature should be lowered from its initial value down to zero. The 
full line corresponds to the energy obtained by the optimal schedule for the same total 
annealing time. 
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Figure 3. The mean final energy of a two-level system is shown for a linear annealing 
schedule T ( r )  = To- ~t as a function of E .  The full line corresponds to the energy obtained 
by the optimal schedule for the same total annealing time. 

-12 
0.001 0 010 0.100 1.000 

Exponential cooling r a t e  a 

Figure4. The mean final energy of a two-level system is shown for an exponential annealing 
schedule T ( l )  = &a' as a function of a. The full line corresponds to the energy obtained 
by the optimal schedule for the same total annealing time. 
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Figure 5. The mean final energies obtained by linear, exponential, and optimal schedules 
are compared as a function of the total available annealing time 7. 
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Figure 4 shows the mean final energy as a function of cy for the exponential schedule. 
Again the available annealing time T =  1000. Here the minimum is attained roughly 
for an a such that at the end of the schedule the temperature equals T0/20. 

In figure 5 we compare the mean final energy for the optimal, the linear, and the 
exponential schedules as a function of 7. The linear and the exponential schedules use 
the best values for E and cy as determined above. 

One clearly sees that the optimal schedule out performs the two other schedules 
for all 7. For T = 1000 the mean final energy for the optimal schedule is smaller by a 
factor of than that for the exponential schedule. Note how the decrease of the 
mean final energy slows down for larger annealing times T. 

Finally using (7.10) we are now able to calculate the thermodynamic speed along 
the optimal path. The thermodynamic speed o can be conveniently expressed as [lo, 191 

(8.3) 

where E (  t )  is the mean energy at time f, E ( T (  1 ) )  is the mean energy of the Boltzmann 
distribution at temperature T ( t )  and a( t )  is its variance. For our problem 

p2 - X / ( l +  X) 

v=" 

In the long time limit and for x<< 1 this reduces to 

(8.4) 

( 8 . 5 )  

Thus the optimal thermodynamic speed, far from being constant, decreases with 
time. Incidentally, the entropy production rate is also not constant and it also decreases 
with time. 

9. Summary 

We have shown how the optimal annealing schedule can be determined for a simple 
three-state system. Even though it was conceived as an introductory example to 
demonstrate methods, it already shows a very surprising and unexpected feature: the 
turnpike. Under what conditions and whether at all this feature can persist for larger 
and more complex systems remains an open question. 

We compared the optimal schedule with the linear and the exponential schedule 
using the best values of the free parameters in these schedules. The mean final energy 
for the optimal schedule is smaller by factors up to lo3 for the annealing times studied. 
This indicates the potential gains of using optimised schedules for simulated annealing 
and stresses the importance of further research. 

A further result gained from this one example is that the constant thermodynamic 
speed schedule is not generally optimal. But as our model is very simple compared 
with the systems usually encountered in simulated annealing it is quite feasible that 
the constant speed schedule may be still a very good approximation to the optimal one. 

We plan to take this approach further and study larger systems. This will lead to 
a better understanding of which quantities enter the optimal schedule in general. We 
note that our approach is the only route which can find the best schedule with certainty. 
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Appendix. Optimal control theory 

The optimal control problem is to minimise the functional 

U t  U 

subject to constraints 

i = f (x, U )  

x(0) = xg. 

and the initial conditions 

x are the state variables, U the controls and U the set of allowed controls. With the 
adjoint variables A a Hamiltonian is defined by 

H ( x ,  ~ , A ) = l ( x ,  u)+A"- f (x ,  U ) .  (A41 
The optimal path is now characterised by 

and U* is obtained by minimising H 

H ( x ,  U * ,  A )  H ( x ,  U,  A )  (A61 
over all U E  U. 

Finally, if the endpoint conditions X ( T )  are not given, we must require 

A ( r )  =O. ('47) 
Thus the control problem has been reduced to solving a boundary value problem or 
an initial value problem for 2n ordinary coupled differential questions where n is the 
dimension of the state vector x. 
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